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A B S T R A C T   

The Indonesian deep-slope demersal fisheries are economically valuable and contribute to the wellbeing of 
millions of people. However, the sustainability of these fisheries is uncertain because they lack data and 
assessment. As a precursor to management, we developed and applied a framework for using standardized catch 
per unit effort (CPUE) and spawning potential ratio (SPR) as indicators to assess eight primary species-fishing 
gear complexes: the Malabar blood snapper Lutjanus malabaricus (droplines and longlines), goldbanded jobfish 
Pristipomoides multidens (droplines and longlines), sharptooth jobfish P. typus (droplines and longlines), crimson 
snapper L. erythropterus (droplines), and rusty jobfish Aphareus rutilans (droplines). We standardized CPUE by 
identifying relevant fishing trips using a species-association approach and removing any changes in the index not 
attributable to abundance by using a delta-generalized linear model. SPR values were estimated on a per-recruit 
basis from life-history parameters using length data. Results indicated that in 2020, all stocks were unhealthy 
(SPR values < 25%) with only a few exceptions (e.g., P. multidens and L. erythropterus). Most fishing grounds with 
low SPR values had stable or decreasing CPUE trends, suggesting that current fishing rates are suboptimal or 
unsustainable. However, L. erythropterus had an increasing CPUE trend but moderate to low SPR, indicating that 
fishing pressure has decreased so SPR may be an underestimate, leading to an optimistic but uncertain conclusion 
about stock health and the sustainability of current fishing rates. Such discrepancies between CPUE and SPR may 
be challenging for the implementation of management measures, but we have outlined and applied a framework 
for interpretation. The most recent yield values set by the Indonesian Ministry of Marine Affairs and Fisheries for 
these stocks, however, are 1.4–2.4 times higher than our calculations. This discrepancy may be attributed to 
several factors, such as inclusion of species that are atypical for deep demersal fish stocks in the Ministry’s es-
timates, differences in methods or the types of data used, or annual variability.   

1. Introduction 

The Indonesian deep-slope demersal fisheries have helped position 
Indonesia to be the world’s second largest exporter of snapper species 
(Cawthorn and Mariani, 2017). The top two species, Malabar blood 
snapper (Lutjanus malabaricus) and the goldbanded jobfish 

(Pristipomoides multidens), have a combined domestic and international 
market value of $382 million USD and $176 million USD, respectively 
(Mous et al., 2020). The fisheries are multi-species and multi-gear, 
predominantly targeting snappers (Lutjanidae) and groupers (Epi-
nephelidae) between 50- and 500-meters (Wibisono et al., 2022). 
Depending on the bathymetry and habitat type, fishers use different 
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gears; droplines (vertical lines or buoy gears) and longlines (bottom or 
set longlines) are by far the most important gear types, but fish traps and 
bottom gillnets are also used in some instances (He et al., 2021). Vessel 
sizes vary from small artisanal boats to very large industrial fleets, or <
1–150 gross tonnes (GT). Despite differences in habitat types throughout 
Indonesian waters, the fisheries operate throughout the Indonesian 
Fishery Management Areas (FMAs), i.e., the boundaries within the 
Indonesian archipelago that delineate fisheries data monitoring and 
management areas. Particularly important FMAs for the deep-slope 
demersal fisheries include FMA 711 (South China Sea), FMA 712 
(Java Sea), FMA 713 (Makassar Strait), and FMA 718 (Arafura Sea; Mous 
et al., 2020). 

Indonesia’s primary management measure that is currently used is a 
licensing system, which aims to regulate fishing capacity towards a Total 
Allowable Catch (TAC). The TAC is set at 80% of the maximum sus-
tainable yield (MSY). MSY is estimated for nine species groups (small 
pelagics, large pelagics, demersal fish, reef fish, penaeid shrimps, lob-
sters, crabs, blue swimming crabs, squids) in each of Indonesia’s 11 
FMAs by the National Committee on Fish Stock Assessment using catch 
statistics, fisheries-independent data (trawling and acoustic data), and 
applying a surplus production model. The most recent MSY estimates are 
from 2017 (Ministerial Decree 50, 2017). The Indonesian Ministry of 
Marine Affairs and Fisheries (MMAF) estimates fishing capacity using 
productivity estimates, which are expressed as annual catch (t) per gross 
tonne (GT). The productivity estimates are documented in a ministerial 
decree (Ministerial Decree 87, 2021). Each fishing gear is characterized 
by a specific catch composition and the approximate volume of catches 
are estimated based on vessel size. From the calculated MSY, the MMAF 
estimates the total GT allocated in each FMA and then the licenses are 
distributed based on this total allocation, while making sure that the 
total amount does not exceed the TAC. 

Like other deep-water fisheries in the tropical and subtropical Pacific 
Ocean, quantitative stock assessments of Indonesian stocks have been 
limited due to the scarcity of biological and fisheries data. National data 
collection has been based on logbooks, which are frequently inaccurate 
and utilize general species complexes such as ‘snapper’ instead of more 
detailed species names (Proctor et al., 2003; DeMartini, 2019). Many of 
the deep-water species have slow growth rates, late ages at maturity, and 
extended longevities, making them particularly vulnerable to over-
exploitation (Newman and Dunk, 2003). In addition to slow growth 
rates, many of the demersal species aggregate around distinct habitat 
formations such as seamounts and ledges, which may lead to 
boom-and-bust population dynamics that are challenging for assessment 
(Francis, 1992; Williams et al., 2013). The use of indicators to assess fish 
stocks may be a viable solution that balances data needs and feasibility 
in a context like the Indonesian deep-slope demersal fisheries; using 
multiple indicators in data-poor scenarios to assess fish stocks is a 
rapidly advancing and promising field in fisheries science (Harford 
et al., 2021). 

Catch per unit effort (CPUE) can be relative to abundance and is 
expected to decline with abundance and in response to increasing fish-
ing effort (Table 1) (Hilborn and Walters, 1992; Ault et al., 2014). 
Without an unfished baseline value for comparison, CPUE alone can 

only indicate potential relative changes in abundance (but without 
knowing if the current abundance is healthy or depleted). Unfished 
baseline CPUE values can occasionally be inferred from historical data, 
catches from marine protected areas, or a comparable pristine habitat, 
but these circumstances are rare (Campbell et al., 2007; Wilson et al., 
2010). In general, and especially when CPUE is measured from fishers 
whose behavior can change in response to a wide range of socioeco-
nomic and management-related factors, it needs to be standardized to 
remove external effects that impact catch rate and account for in-
consistencies in fishing patterns and environmental factors (Chiarini 
et al., 2022; Maunder and Punt, 2004). A goal of standardizing the CPUE 
is to reduce the noise and variance in catch data and amplify the signal in 
abundance. Therefore, standardized CPUE is a useful indicator for 
evaluating the impacts of fishing effort on abundance and identifying 
variables that affect catch rates (Maunder et al., 2006). 

Spawning potential ratio (SPR) is the relationship between repro-
ductive potential (i.e., the expected egg output of an average individual 
fish throughout its expected lifetime when the population is fished), 
divided by the individual’s expected egg output if the population were 
not fished at all (Quinn and Deriso, 1999; Meester et al., 2001). Thus, 
SPR takes on values between 0% (resource fully depleted) and 100% 
(resource unexploited) (Brooks et al., 2010). For SPR, target conserva-
tion reference points are commonly set at 40%, and 20–30% is set as a 
limit reference point below which recruitment may be severely impaired 
(Table 1) (Mace and Sissenwine, 1993; Mace, 1994). However, reference 
points are highly dependent on life histories and models can be used to 
predict stock-specific reference points from life-history parameters 
(Zhou et al., 2020). In a harvest control strategy, fisheries that have 
values below the limit reference point will trigger a series of manage-
ment actions to reduce fishing effort and bring the SPR back to the target 
(Gabriel and Mace, 1999). A major strength of the SPR approach is that 
the current SPR is given relative to an unfished, pristine reference point, 
something that can provide insight on approximate MSY conditions and 
thus the health of the fish stock. On the other hand, a major weakness of 
SPR is that it assumes equilibrium conditions, a potentially invalid 
assumption if there have been recent inconsistencies, for example in 
recruitment or fishing pressure and data collection methods. This is 
where CPUE can complement SPR by supporting or challenging the in-
terpretations of SPR that assume consistency. 

CPUE and SPR are utilized and interpreted differently. CPUE is an 
indicator of relative fishing abundance, and therefore stock trend, that 
incorporates catch relative to effort. SPR is an indicator of relative fish 
biomass in the stock. When considered together, they can be used to 
assess fish stocks and provide management advice on controlling fishing 
effort (Table 2). However, contradictory results may arise such as a 
decreasing CPUE with a high SPR. In such a scenario, an evaluation 
framework is needed to interpret results and provide fisheries managers 
with guidance. In this study, we develop such a framework and use it to 
assess the status of species in the Indonesian deep-slope demersal fish-
eries. Specifically, we focus on eight species-fishing gear complexes that 
represent the most abundant fish species in the fisheries, i.e., Lutjanus 
malabaricus-dropline and longline, Pristipomoides multidens-dropline and 
longline, P. typus-dropline and longline, L. erythropterus-dropline and 
Aphareus rutilans-dropline. We aimed to: 1) calculate a time series of 
annual standardized CPUE values for each species-gear complex, 2) es-
timate the standardized CPUE index of prominent fishing grounds in 
each FMA, 3) compare the CPUE index with SPR values in each FMA, 4) 
compare CODRS productivity estimates with respective values provided 
by the MMAF, and 5) discuss potential management options and im-
plications based on the comparison between the standardized CPUE, 
SPR, and MMAF productivity values. 

Table 1 
Standard interpretations of single indicator results for catch per unit effort 
(CPUE) and spawning potential ratio (SPR) values and trends.  

Single indicator result Standard interpretation 

CPUE trend  
Increasing The stock appears to be growing. 
Stable The stock appears to be stable. 
Decreasing The stock appears to be declining. 

SPR (assuming equilibrium conditions)  
High (≥ 40%) The stock appears to be healthy. 
Moderate (25–40%) The stock may be overfished. 
Low (≤ 25%) The stock is likely overfished.  
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2. Materials and methods 

2.1. Data sources 

Data for this study were collected through the Crew-Operated Data 
Recording System (CODRS), which has been implemented across the 
Indonesian Exclusive Economic Zone (EEZ) by The Nature Conservancy 
(TNC) and its affiliate Yayasan Konservasi Alam Nusantara (YKAN), in 
collaboration with the MMAF; it is the first documented multi-species 
data collection program of this scale in tropical fisheries (Wibisono 
et al., 2021 and 2022). The CODRS dataset consists of fishing informa-
tion (i.e., fishing gear and vessel size), catch information (i.e., species 
and length), and location data. Participating fishers are equipped with a 
measuring board, camera, and a GPS tracking device that records vessel 
coordinates at every hour. In CODRS, fishers are required to take pho-
tographs of their entire catch on a measuring board during fishing. Data 
from CODRS represent fishing activities in all Fisheries Management 
Areas (FMAs) (Fig. 1). The FMAs represent units for fisheries monitoring 
and management in Indonesia (Menteri Kelautan dan Perikanan 
Republik Indonesia, 2014). As each FMA is characterized by different 
habitat characteristics and bathymetry, a variety of fishing gears are 
used in each area, thus leading to different catch compositions (Fig. 1). 
In this study, we used CODRS data from January 2016 to December 
2021, amounting to 13,632 fishing trips. We focused on the two main 
fishing gears, (i.e., droplines and longlines), as well as five of the most 
abundant (in terms of number of individuals and biomass) species in the 
catch (i.e., Malabar blood snapper - Lutjanus malabaricus (n dropline=
310,486, n longline= 389,107), golbanded jobfish - Pristipomoides mul-
tidens (n dropline= 343,672, n longline= 216,802), sharptooth jobfish - 
P. typus (n dropline= 221,444, n longline= 47,404), crimson snapper - 
L. erythropterus (n dropline= 154,734), and Rusty jobfish - Aphareus 
rutilans (n dropline= 106,206). 

2.2. Fishing ground coordinates and number of fishing days 

To assign fishing locations to photographs of fish, we matched the 
date and time on each photograph to that of the GPS coordinates. 
Depending on the vessel size, photographs may be taken on the same day 
as the fishing day. Smaller vessels < 10 GT tend to wait until the end of 
the fishing trip to take the photographs due to space constraints. Note 
that this practice means the fishing locations may be wholly inaccurate 
for small vessels, but they do not typically travel far from their home 
port (i.e., cross FMA boundaries). The number of fishing days was 
defined as the sum of all days with matching photographs in a single 
fishing trip. If there were multiple coordinates in a day, we used the 
average of the latitude and longitude for that day. We then interpolated 
the depth using 15 arc-second bathymetry data from the General 
Bathymetric Chart of the Oceans (GEBCO, 2020). To exclude potentially 
erroneous fishing coordinates, we only utilized fishing location co-
ordinates from depths of 0–500 m. 

2.3. Calculating CPUE 

We calculated the nominal CPUE (kg/fishing day) by dividing catch 
by effort per identified fishing trip. The standardized CPUE was the 
product of the probability of a positive catch and the unbiased estimated 
CPUE of the target species. The unbiased estimated CPUE is the CPUE 
estimate that accounts for transformation bias when doing inverse 
transformation from a lognormal distribution (Miller, 1984). We defined 
catch as the total weight (kg) of each species in a fishing trip and effort as 
the number of fishing days in a fishing trip (fishing days). Fish weight 
was converted from length using the length-weight conversion equation:  

W = aLb                                                                                              

where W was weight (g), L was length (cm), and a and b were the 

Table 2 
Interpretations of the combination of indicator results for catch per unit effort (CPUE) and spawning potential ratio (SPR) trends and values.  

CPUE trend SPR Combined interpretation 

Increasing or stable 
trend 

High (≥ 40%) Indications that the stock is healthy and current fishing rates may be sustainable. 

Decreasing trend High (≥ 40%) 
Indication that fishing pressure has increased so SPR may be an overestimate, leading to less certainty about the health of the stock and 
the sustainability of current fishing rates. 

Increasing trend 
Moderate 
(25–40%) 

Indication that fishing pressure has decreased so SPR may be an underestimate, leading to an optimistic but uncertain conclusion about 
stock health and the sustainability of current fishing rates. 

Stable or decreasing 
trend 

Moderate 
(25–40%) 

Indications that the stock is unhealthy and current fishing rates may be suboptimal (stable) or unsustainable (decreasing). 

Increasing trend Low (≤ 25%) Indication that fishing pressure has decreased so SPR may be an underestimate, but likely that the stock is in poor health but showing 
signs of recovery. 

Stable or decreasing 
trend Low (≤ 25%) Indications that the stock is unhealthy and current fishing rates are suboptimal (stable) or unsustainable (decreasing).  

Fig. 1. Map of the Crew-Operated Data Recording System (CODRS) sites, i.e., fishing villages or ports where CODRS was deployed (black dots). Black lines denote 
Fishery Management Area (FMA) boundaries, and colored areas denote prominent fishing grounds per fishing gear. 
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length-weight conversion parameters (Supplementary Table S1). The 
length-weight parameter estimates were selected from available studies 
based on proximity to our study area, number of samples, and content 
availability. When there were no values found for a species, we used 
morphologically similar species to obtain the length-weight coefficients 
(see also Wibisono et al., 2022). 

For each species-fishing gear complex, the CPUE standardization 
process included (i) the identification of relevant fishing trips, (ii) the 
fitting of a delta-GLM model to the data [both binomial (the probability 
of encountering a species) and lognormal (CPUE of fishing trips where 
the target species is encountered) models], (iii) the creation of a refer-
ence grid to predict or estimate the estimated marginal means (EMM), 
and (iv) the calculation of the standardized CPUE index (along with its 
95% confidence intervals) (Fig. 2). Different reference grids were used to 
estimate the annual standardized CPUE index per species-fishing gear 
complex and the standardized CPUE index per fishing ground in 2020 
(Fig. 2). 

2.4. Identifying relevant fishing trips 

Individual fishing trips can contain multiple species. Therefore, we 
calculated the standardized CPUE by analyzing fishing trips relevant to 
each of the target species (L. malabaricus, P. multidens, P. typus, 
L. erythropterus, and A. rutilans) (Maunder and Punt, 2004; Stephens and 
MacCall, 2004). In the absence of detailed habitat information on the 
target species, we used a species-association approach that identified 
relevant fishing trips through logistic regression based on the catch 
composition from each fishing gear (Stephens and MacCall, 2004). We 
used the regression coefficients from each species in the catch to 
compute the estimated probability that the target species would have 
been encountered in the fishing trip (Stephens and MacCall, 2004). Each 
fishing trip was assigned a trip score (Sj), which was a function of the 
species caught in the fishing trip: 

Sj = exp
∑k

i=0
xijβi  

where: 
x is the presence or absence of non-target species i in trip j, β1, β2, …, 

βk are the coefficients from the logistic regression for species k that is 
also caught in the trip and β0 is the intercept. 

The trip score was converted into the predicted probability (πj) of 

observing the target species (Y=1 for trip j): 

πj = Pr
{

Yj = 1
}
=

Sj

1 + Sj 

The trips that were used in the subsequent CPUE standardization 
process had an estimated πj that was above a critical value. The critical 
value, unique to each species-fishing gear complex, was a value that 
minimized the false positives and false negatives of the predicted fishing 
trips by using an F1 score. 

2.5. Model selection 

We utilized the delta-GLM model in the standardization process to 
account for zero catches in a fishing trip (Vignaux, 1994; Stefansson, 
1995). The general form of the delta model is: 

Pr(Y = y) =
{

w, y = 0
(1 − w)f (y) otherwise  

where y is total weight of the target species (kg), w is the probability of 
zero observation of the target species, which was modeled using the 
binomial distribution with a logit link function, and f(y) is the mean 
CPUE of positive fishing trips, which was modeled using the lognormal 
distribution, meaning that zero-values were excluded from the analysis. 

We included year as a predictor variable in the binomial (the prob-
ability of encountering a species) and lognormal (CPUE of fishing trips 
where the target species is encountered) models for all species (Sup-
plementary Table S2) irrespective of its significance because it was a 
variable of interest that allowed us to detect temporal (annual) and 
spatial differences (Maunder and Punt, 2004). We chose the explanatory 
variables from available data, such as FMA, depth (m), vessel size (GT), 
and month. We used a forward step-wise approach to choose the vari-
ables. To ensure the validity of the step-wise regression approach, we 
compared the AIC between the model that was selected through the 
forward step-wise approach and the model using just the variable of 
interest (year). Finally, we included variables that minimized the AIC. 
We also tested the variables of each model for collinearity. To assess the 
model fit, we calculated the D2 (proportion of deviance explained) for 
each model, as well as the adjusted D2 values, which consider the 
number of observations and the number of predictors, thus allowing 
direct comparison among different models (Guisan and Zimmermann, 
2000). 

Fig. 2. Overview of the catch per unit effort (CPUE) standardization procedure to estimate (a) the annual standardized CPUE index and (b) the standardized CPUE 
index in 2020 at each fishing ground. EMM = Estimated Marginal Means (or least square means). 
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2.6. Standardized CPUE 

To calculate the probability of a positive catch and unbiased estimate 
of the CPUE, we calculated the estimated marginal means (EMM, or least 
squared means) of both the binomial (the probability of encountering a 
species) and lognormal (CPUE of fishing trips where the target species is 
encountered) components of the delta-GLM model over a reference grid 
of predictors using the ‘emmeans’ package in R. The EMM represented 
the weighted averages of predicted probability of a positive fishing trip 
and the weighted averages of predicted CPUEs based on the values in the 
reference grid. To estimate the annual standardized CPUE, the reference 
grid consisted of the mean values of each continuous predictor (depth, 
vessel size) and levels of categorical predictors (FMA, month, year) 
(Supplementary Table S2). To estimate the standardized CPUE per 
fishing ground we used a different reference grid: we set the latitude, 
longitude, and depth that represented prominent fishing grounds and we 
chose to present 2020 to represent a recent point of the data collection 
time series. All other continuous or categorial variables were included in 
the reference grid as means. The prominent fishing grounds for each 
species-fishing gear complex were identified by using the kernel density 
estimator on the estimated fishing ground coordinates and the ‘MASS’ 
package in R (Venables and Ripley, 2002). We identified the latitude, 
longitude, and depth of prominent fishing grounds by determining the 
local maxima of each kernel density. 

To get an unbiased estimate of the CPUE per year from the lognormal 
model, we back-transformed the lognormal EMM and applied a bias 
corrector to account for transformation bias (Lo et al., 1992): 

d̂k = exp(γ0 + γ1k)ψd̂k  

where: 
d̂k = unbiased estimate of the CPUE of the target species. 
γ0 = mean log(CPUE) for the reference year (2016). 
γ1k = main effects of year k. 
ψ d̂k

= correction for bias. 
The bias corrector and confidence intervals of the standardized CPUE 

were calculated through the delta method (Bradu and Mundlak, 1970; 
Seber, 1982) (Supplementary Document S1). To detect relative annual 
changes in CPUE trends, we normalized the standardized and nominal 
CPUE around their respective means and we fitted linear regression 
models while considering outliers based on Cook’s distance and filtering 
out values greater than 3 times the mean (Cook and Weisberg, 1984). 

2.7. Calculating SPR 

The spawning stock biomass (SSB) per recruit estimates the expected 
reproductive potential (i.e., fecundity, egg output) of an average indi-
vidual. The ratio of the SSB of a fished population over the SSB of a 
pristine population, that would have existed in the absence of fishing, is 
known as the spawning potential ratio (SPR) and is used as a measure of 
the impact of fishing on the reproductive output of a population 
expressed as the degree of departure from its virgin condition (Good-
year, 1993). The maximum value SPR equals 1 or 100% in an unex-
ploited stock and declines towards zero as fishing mortality increases 
removing all mature female fish and leaving a stock with no spawning 
potential (Hordyk et al., 2015). SPR has its strengths and weaknesses as 
a measure of stock status. As such, SPR is rather used as a proxy metric to 
understand the status of a stock by providing target or limit reference 
points for fisheries managers when there are insufficient data (lack of 
biological studies and long-term datasets) to determine the stock-recruit 
relationship (Camp et al., 2021). 

SPR (%) values used in this analysis were derived from Mous et al. 
(2020) that uses CODRS length data to calculate SPR (by species, year, 
and FMA) on a per-recruit basis from life-history parameters of natural 
mortality (M), fishing mortality (F), growth, asymptotic length (Linf), 

and gear selectivity parameters as described in Dimarchopoulou et al. 
(2021) and Wibisono et al. (2022) where the reader is referred for 
further methodological details (see the Supplementary Material of 
Dimarchopoulou et al., 2021 for the R code of the age-based model used 
to calculate SPR). The equilibrium Beverton-Holt estimator was used to 
calculate the instantaneous total mortality (Z = M + F) from length data 
applying the Ehrhardt & Ault (1992) bias-correction. For this estima-
tion, we used the catch length-frequency distribution taking into 
consideration the range from the length that is 5% higher than the modal 
length to the 99th percentile, as it is an accepted practice to omit the 
right hand side of the length-frequency distribution that is too close to 
Linf (Sparre & Venema 1998). We calculated F as the difference between 
Z and M, assuming full selectivity for the size range between the modal 
length and the largest fish in the catch. We assumed an S-shaped (lo-
gistic) selectivity curve, with the length at 50% selectivity halfway be-
tween the first percentile and modal length of the catch LF distribution 
and with 99% selectivity achieved at modal length. The calculation of 
SPR also accounted for maturity, and assumed it to be knife-edged, 
where fish in age or length bins that were below the age/length at 
maturity were assigned 0 and fish above that value were assigned 1. 
Length at maturity (Lmat) was calculated from asymptotic length Linf 
which for deep-water snappers (Lutjanidae) was Lmat = 0.59 * Linf 
(Dimarchopoulou et al., 2021). 

The length-dependent M to be used in the SPR estimation was 
calculated with an empirical formula that relates M to length (from 
CODRS data) and growth (literature-derived K and Linf calculated from 
the CODRS maximum length Lmax based on the published relationship 
Linf = 0.9 * Lmax of Nadon and Ault 2016) characteristics (Gislason et al., 
2010). A multiplicative correction factor (CF = 0.67) was applied to the 
formula to correct for the unrealistically high estimates of M for the 
tropical deep-water snappers targeted here (it should be noted that the 
introduction of the correction factor did not put the modified formula 
outside its original confidence limits) (Mous et al., 2020): 

M =
CF ∗ 1.733 ∗ K ∗ L1.44

∞

L1.61 (1) 

(Reworked from its original notation as a log-transformed model). 
While the catch curve analysis assumes a constant Z over the size 

range that is used for its estimation, Gislason et al. (2010) demonstrate 
that natural mortality varies with size. To deal with this inconsistency, 
we applied the adjusted Gislason et al. (2010) empirical relationship to 
the length classes over which we estimated Z. Then we calculated the 
average M over these size classes and applied that average to the size 
range over which we estimated Z. Outside this size range, a varying M 
was assumed following the modified Gislason et al. (2010) relationship. 

2.8. Combining standardized CPUE and SPR per fishing ground 

The combination and comparison of standardized CPUE levels and 
SPR calculations by fishing ground was done on the prominent fishing 
grounds for the six fish species of interest. SPR calculations were done 
with the method analyzed above on an FMA and species level for the 
most recent year with fully available data, i.e., 2020. We categorized an 
FMA as being at high risk of overfishing that might result in lower 
recruitment when SPR ≤ 25%, medium risk when SPR > 25% and 
< 40%, and low risk when SPR ≥ 40% (Table 1) (Mace and Sissenwine, 
1993; Mace, 1994; Mous et al., 2020; Dimarchopoulou et al., 2021). We 
categorized a fish stock as declining (and of concern) when standardized 
CPUE trends were statistically significant and decreasing over the entire 
time series. If the standardized CPUE trend was statistically insignificant 
or stable, we classified the stock as stable. When the standardized CPUE 
trend was increasing and statistically significant, we classified the stock 
as growing (Kleiven et al., 2022; James et al., 2004; Graham et al., 
2008). We developed a standard individual interpretation of CPUE and 
SPR indicators (Table 1), as well as a framework for their combined 
sequential interpretation (Table 2) where contradictory results may 
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invoke confusion. 

2.9. Fishing vessel yield estimates by fishing gear and vessel size 

The Indonesian Ministry of Marine Affairs and Fisheries (MMAF) 
estimates fishing vessel yield values (t/GT/year) to define the produc-
tion of fishing gears and to set the appropriate taxes for fishing permits 
(Ministerial Decree, 2021). To compare the MMAF estimates with those 
derived from the analyzed CODRS dataset, we calculated the annual 
fishing vessel yield values for the main fishing gears of the deep-slope 
demersal fisheries, i.e., droplines and longlines, as well as for the 
different fishing vessel sizes (Nano: GT ≤ 5; Small: 5 < GT ≤ 10; Me-
dium: 10 < GT ≤ 30; Large: GT > 30). We also recalculated MMAF yield 
using only the species typically caught in these fisheries. 

3. Results 

Through a species-association approach, the model identified the 
same number of total fishing trips that share characteristics in terms of 
species composition and fishing gear (Supplementary Table S3). Fishing 
trips that targeted all five studied species using droplines shared the 
same catch composition in terms of species presence/absence. Similarly, 
fishing trips that targeted L. malabaricus, P. multidens, and P. typus using 

longlines shared the same catch composition in terms of species pres-
ence/absence. Despite similarities in catch characteristics within the 
same fishing gears, delta-GLM modelling results showed that CPUE for 
each species-fishing gear complex was affected by different combina-
tions of predictors that reduced variance and minimized AIC (Table 3; 
Supplementary Table S4). The best fit binomial (the probability of 
encountering a species) and lognormal (CPUE of fishing trips where the 
target species is encountered) models of each species-fishing gear 
complex also comprised of different combinations of predictors indi-
cating different fishing and environmental variables that determined a 
successful catch and the CPUE. The best fit model for dropline CPUE of 
P. multidens included depth, but depth was removed in the best fit model 
for L. malabaricus (Supplementary Table S4b, S4f). We found that FMA 
was a significant predictor of the CPUE (p < 0.05), except for the 
lognormal (CPUE of fishing trips where the target species is encoun-
tered) models of L. malabaricus-longline and A. rutilans-dropline, while it 
could not predict the probability of catch for droplines (Supplementary 
Table S4). Month was a significant predictor (p < 0.05) for the 
lognormal component of the model of L. malabaricus-longline catches 
(Supplementary Table S4d). Year (2016–2021) was a significant pre-
dictor for most of the binomial (the probability of encountering a spe-
cies) models except for a few cases in which it was significant only for 
certain year(s) (Supplementary Table S4). The species-fishing gear 

Table 3 
Nominal, standardized, and normalized-standardized catch per unit effort (CPUE; kg/fishing days) and spawning potential ratio (SPR) of Lutjanus malabaricus 
(dropline and longline), Pristipomoides multidens (dropline and longline), P. typus (dropline and longline), L. erythropterus (dropline), and Aphareus rutilans 
(dropline) in 2020 at different fishing grounds (FMA: fisheries management area).  

Fish Species Fishing Gear Year Normalized CPUE Nominal CPUE Standardized CPUE Longitude Latitude SPR (%) FMA 

Lutjanus malabaricus Dropline  2020  0.87  0.62  1.73  107.12  3.34  3  711      
0.89  0.62  2.59  114.23  -5.18  5  712      
0.81  0.62  0.00  117.78  -1.31  11  713      
0.81  0.62  0.00  124.89  -5.96  13  714      
0.89  0.62  2.46  132.00  -2.86  3  715      
0.81  0.62  0.00  132.00  -7.51  7  718 

Lutjanus malabaricus Longline  2020  0.62  0.52  2.31  125.65  -10.94  6  573      
0.62  0.52  2.07  109.44  4.64  3  711      
0.62  0.52  2.52  116.64  -7.23  11  713      
0.62  0.52  1.99  131.06  -7.97  13  714      
0.62  0.52  2.27  125.65  3.90  0  716 

Pristipomoides multidens Dropline  2020  1.13  0.55  0.04  101.79  -4.41  6  572      
1.13  0.55  0.30  107.12  3.34  5  711      
1.13  0.55  0.32  114.23  -5.18  22  712      
1.13  0.55  0.04  117.78  -1.31  30  713      
1.13  0.55  0.02  124.89  -5.96  16  714      
1.13  0.55  0.32  132.00  -2.86  11  715      
1.13  0.55  0.05  132.00  -7.51  11  718 

Pristipomoides multidens Longline  2020  0.94  0.80  3.00  105.83  -5.75  6  572      
0.94  0.80  3.04  125.65  -10.94  11  573      
0.94  0.80  2.94  109.44  4.64  5  711      
0.94  0.80  3.10  116.64  -7.23  30  713      
0.94  0.80  2.89  131.06  -7.97  16  714 

Pristipomoides typus Dropline  2020  0.74  0.39  0.32  96.46  3.34  7  572      
0.74  0.39  0.33  107.12  3.34  4  711      
0.74  0.39  0.33  114.23  -5.18  11  712      
0.74  0.39  0.32  117.78  -1.31  11  713      
0.74  0.39  0.32  124.89  -5.96  8  714      
0.74  0.39  0.33  132.00  -2.86  11  715      
0.74  0.39  0.33  132.00  -7.51  15  718 

Pristipomoides typus Longline  2020  1.40  1.64  0.82  96.82  3.16  7  572      
1.40  1.64  0.34  125.65  -10.94  9  573      
1.40  1.64  0.78  109.44  4.64  4  711      
1.40  1.64  0.15  116.64  -7.23  11  713      
1.40  1.64  1.00  131.06  -7.97  8  714 

Lutjanus erythropterus Dropline  2020  1.50  0.61  0.48  107.12  3.34  2  711      
1.49  0.61  0.32  117.78  -1.31  8  713      
1.50  0.61  0.48  132.00  -2.86  23  715      
1.50  0.61  0.35  132.00  -7.51  100  718 

Aphareus rutilans Dropline  2020  1.27  0.92  1.94  96.46  3.34  7  572      
1.27  0.92  1.93  117.78  -1.31  10  713      
1.27  0.92  1.84  124.89  -5.96  8  714      
1.28  0.92  2.20  132.00  -2.86  4  715  
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Fig. 3. Annual normalized-nominal and 
normalized-standardized catch per unit effort 
(CPUE; kg/fishing days) of eight species-fishing 
gear complexes of the Indonesian deep 
demersal fisheries. Blue circles represent stan-
dardized CPUE, while white circles represent 
nominal CPUE; grey shade denotes the 95% 
confidence interval. CPUE indices above the 
straight black line are larger than the mean, 
while indices below the black line are lower 
than the mean. Dashed blue lines represent 
linear regressions; for summary statistics of the 
models please refer to Supplementary Table S5.   
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complex in this model with the lowest D2 and adjusted D2 was 
A. rutilans-dropline (binomial model) (1.08%; 0.92%), while the highest 
was P. typus-dropline (lognormal model) (58.97%; 54.84%) (Supple-
mentary Table S4j, S4o). 

The standardized CPUE trends over the analyzed six years fluctuated 
differently among the studied species-gear complexes (Fig. 3). Notably, 
the standardized CPUE values for L. malabaricus-longline (Fig. 3B) 
exhibited a significantly decreasing trend (adjusted R2 = 0.9, p < 0.01) 
from 2017 to 2021 (the year 2016 was excluded from the regression as 
an outlier). Similarly, the standardized CPUE followed a declining trend 

from 2017 to 2021 for L. malabaricus-dropline (adjusted R2 = 0.6, 
p = 0.07), P. multidens-dropline (adjusted R2 = 0.2, p = 0.28), and 
P. typus-dropline (adjusted R2 = 0.1, p = 0.29); however, these trends 
were not statistically significant (only marginally for L. malabaricus- 
dropline) (Fig. 3A, C, E). The standardized CPUE for L. erythropterus- 
dropline (Fig. 3G) showed a marginally non-significant increasing trend 
(adjusted R2 = 0.5, p = 0.07) from 2017 to 2021 (the year 2016 was 
excluded from the regression as an outlier). For the species-gear com-
plexes P. multidens-longline, P. typus-longline, and A. rutilans-dropline, 
the standardized CPUE followed an undetermined trend, or was stable 

Fig. 4. Comparison between the standardized catch per unit effort (CPUE; kg/fishing day) and SPR (%) calculations in each FMA. Each circle represents a prominent 
fishing ground for each species-fishing gear complex. The size of the circle is scaled to the standardized CPUE index; higher CPUE values are depicted with a larger 
circle. Numbers represent Fishery Management Areas (FMA), delineated by black lines. FMAs with no SPR values indicate low sample sizes (n < 50). SPR is color- 
coded based on the risk level: high risk (SPR ≤ 10%) is dark red and light red (SPR ≤ 25% & > 10%), medium risk (SPR < 40% & > 25%) is orange, and low risk (SPR 
≥ 40%) is green. 
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through time (Fig. 3D, F, H; Supplementary Table S5). 
The comparison between the standardized CPUE index and SPR 

showed that increasing or high CPUE indices for a species-fishing gear 
complex did not equate to higher SPR values (≥40% i.e., low risk or even 
25–40% i.e., medium risk) (Fig. 4). Only for P. multidens-longline did the 
highest standardized CPUE (3.10 kg/fishing day) coincide with the 
highest SPR (30%, i.e., medium risk) in FMA 713 (Fig. 4D). On the other 
hand, in most cases a higher relative CPUE value was found in FMAs 
with a very low SPR (≤ 10%), e.g., L. malabaricus-dropline in FMA 712 
(Fig. 4A), L. malabaricus-longline in FMAs 573 and 716 (Fig. 4B), 
P. typus-longline in FMA 714 (Fig. 4F), and A. rutilans-dropline in FMA 
715 (Fig. 4H). These discrepancies between CPUE and SPR levels can be 
translated into different management recommendations, depending on 
the management priority (Table 2). Temporal trends in CPUE and SPR 
by species-gear complex and by FMA are given in Supplementary 
Figs. S1 and S2. 

The fishing vessel productivity estimates (t/GT/year) provided by 
the MMAF for longlines and droplines are presented in Table 4, while the 
respective values derived from the analyzed CODRS dataset are given in  
Table 5 for the two gears and in Table 5 for the different fishing vessel 
sizes (Nano: GT ≤ 5; Small: 5 < GT ≤ 10; Medium: 10 < GT ≤ 30; Large: 
GT > 30). The two estimates for droplines were closer to each other - 
0.7 t/GT/year the MMAF value vs 0.5 ( ± 0.05) the CODRS value, while 
the MMAF value for longlines (0.8 t/GT/year) was more than two times 
higher than the respective CODRS value (0.36 ± 0.04 t/GT/year). 
However, when only taking into consideration the taxa that are typically 
found in the studied deep demersal fisheries for the MMAF values, the 
estimates are indeed closer, i.e., (for droplines it was 0.43 t/GT/year the 
MMAF value vs 0.5 ( ± 0.05) the CODRS value, while for longlines it was 
0.32 t/GT/year the MMAF value vs 0.36 ( ± 0.04) the CODRS value). 
The mean productivity of the nano vessels was the highest (0.74 
± 0.11 t/GT/year), while it was the lowest for large vessels (0.33 
± 0.05 t/GT/year). The year 2020 seemed to be the most productive 
year across all vessel sizes (0.68 ± 0.14 t/GT/year).. 

4. Discussion 

In a data-limited context where traditional age-based stock 

assessments cannot be implemented, such as the case of the Indonesian 
deep-slope demersal fisheries, a framework of multiple indicators (i.e., 
proxies for variables of interest rather than estimated quantities like 
biomass) interpreted together is often useful to infer stock status and 
inform management (Harford et al., 2021). Such indicators can be 
“empirical” / “model-free” derived mostly from raw data (e.g., CPUE; 
although models may be involved in standardizing CPUE) or “estimated” 
/ “model-based” derived from raw data, other parameters, and 
data-limited stock assessment methods (e.g., SPR) (Dowling et al., 
2015). Here, we use the combination of standardized CPUE and SPR 
indicators, derived from locally collected catch and length data, to gain 
insight on the status of prominent fish stocks in Indonesia. The specific 
steps to CPUE standardization and SPR estimation, the calculation of 
fishing ground-specific CPUE, and the sequential interpretation of CPUE 
and SPR indices to infer relative changes in fish abundance that lead to 
stock status, may generalize to other data-limited fisheries with only 
catch and length data available. 

Comparison between standardized CPUE indices and SPRs of the 
Indonesian deep-slope demersal fishery highlighted the importance of 
monitoring and analyzing fisheries data using multiple indicators. Here, 
none of the studied stocks showed increasing or stable CPUE trends 
along with high SPR values, which means that none of them appear to be 
healthy or sustainably exploited. Only L. erythropterus showed an 
increasing CPUE trend that was, however, not significant but rather 
associated with high uncertainty, and high SPR values but only in two 
FMAs. The combination of CPUE and SPR seems to be the most worrying 
for L. malabaricus that exhibits decreasing CPUE trends and SPR values 
that are consistently low across FMAs (well below 25%); strong in-
dications that the stock is unhealthy and current fishing rates are un-
sustainable. The rest of the studied stocks, i.e., P. multidens, P. typus, 
A. rutilans, also appear to be unhealthy and undergoing suboptimal 
fishing rates with stable CPUE trends and low SPR values (only 
P. multidens has moderate SPR in FMA 713). 

4.1. Standardized CPUE 

Through the process of CPUE standardization, we gained insight into 
how the Indonesian deep-slope demersal fisheries are impacting the top 
five target species (L. malabaricus, P. multidens, P. typus, L. erythropterus, 
and A. rutilans). Our results indicated that fishing trips targeting these 
species share catch characteristics. The fit of the binomial (the proba-
bility of encountering a species) and lognormal (CPUE of fishing trips 
where the target species is encountered) components of the delta-GLM 
models were different for each species-fishing gear complex. Low D2 

and adjusted D2 values of the A. rutilans-dropline binomial model, which 
indicated poor fit, may be caused by the lack of explanatory variables 

Table 4 
Fishing vessel yield values as set by the Ministry of Marine Affairs and Fisheries 
of Indonesia (MMAF; Ministerial Decree, 2021) and catch composition for the 
main fishing gears used in the deep demersal snapper-grouper fishery, i.e., 
longlines and droplines. Translation of the gear names were derived from 
(Ministerial Decree, 2021).  

Type of fishing gear (Indonesian) Catch composition 
Fishing 
vessel yield 
(t/GT/year) 

Hooks and 
lines 
(pancing) 

Set longlines, i.e., 
bottom longlines 
(rawai dasar) 

Fishes 
(Arius spp. 40%, 
Lutjanus spp. 20%*, 
Cephalopholis spp.*, 
Cromileptes altivelis, 
Epinephelus spp.*, 
Plectropomus spp. 20%*, 
others 20%) 

0.80 
[0.32**]  

Handlines, i.e., 
droplines (pancing 
ulur) 

Fishes 
(Lethrinus spp. 21%*, 
Cephalopholis spp.*, 
Cromileptes altivelis, 
Epinephelus spp.*, 
Plectropomus spp. 21%*, 
Lutjanus spp. 20%*, 
Nemipterus spp. 15%, others 
23%) 

0.70 
[0.43**]  

* Taxa that typically show up in the studied deep demersal fisheries 
** Value when we only include the taxa that typically show up in the studied 

deep demersal fisheries 

Table 5 
Annual fishing vessel yield values as calculated from the CODRS dataset 
analyzed in the present study for the main fishing gears used in the deep 
demersal snapper-grouper fishery, i.e., longlines and droplines. SE: standard 
error.  

Fishing gear Year Fishing vessel yield (t/GT/year) 

Longlines 2016 0.35  
2017 0.24  
2018 0.33  
2019 0.44  
2020 0.48  
2021 0.29  
Mean ( ± SE) 0.36 ( ± 0.04) 

Droplines 2016 0.50  
2017 0.45  
2018 0.43  
2019 0.52  
2020 0.73  
2021 0.39  
Mean ( ± SE) 0.50 ( ± 0.05)  
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pertinent to the target species’ probability of catch. For example, the 
occurrence of A. rutilans, which is considered benthopelagic, very mo-
bile, and has broad habitat preferences, might be dictated by other 
environmental variables, such as prey distribution (e.g., teleost fish, 
squid, pelagic urochordates) or factors that cause prey items to aggre-
gate, such as localized upwellings, presence of shelf breaks, or sea-
mounts (Martinez-Andrade, 2003; Genin, 2004; Mundy, 2005; Misa, 
2013; Sih et al., 2019). Other D2 values from this study were within the 
range of other CPUE standardization processes (13–21%), while some 
were higher (up to nearly 60% for P. typus-dropline) showing a 
reasonably good fit (Punt et al., 2000; Maunder and Punt, 2004; Hazin 
et al., 2008). 

Certain values of the annual standardized CPUE index may need 
additional investigation. For example, the very low nominal and stan-
dardized CPUE values of L. malabaricus-dropline and L. erythropterus- 
dropline in 2016 may be caused by a high discrepancy between the 
identified fishing trips and positive fishing trips (5 out of 485 and 6 out 
of 485, respectively). It is unclear whether the low number of positive 
fishing trips are due to low occurrence of the target species or due to 
misidentification of fishing trips. Low occurrence of the target species 
may be caused by environmentally driven fluctuations in the population 
(e.g., recruitment failure) or localized depletions due to fishing (Planque 
et al., 2010). Differences in CPUE indices among fishing gears are not 
surprising, given that fishing gears operate in different depths and 
habitats (Mous et al., 2020; Wibisono et al., 2021). A more detailed 
method to identify relevant fishing trips that considers targeting specific 
size classes may be needed to improve the fishing trip identification. A 
sensitivity analysis using different methods to select fishing trips, such as 
a direct principal component approach or clustering fishing tactics, 
could help corroborate the findings of this study (Winker et al., 2013; 
Okamura et al., 2018). Lastly, because small vessels take photographs at 
the end of trips, some shrinkage could occur, and interpretation of these 
results should take this consideration into account. 

Without baseline (historical) CPUE values we cannot assess whether 
a current CPUE value reflects high or low abundance in the water; CPUE 
values give the relative change in fish abundance. A time series of CPUE 
estimates may demonstrate changes in the abundance of the underlying 
stock if we assume consistency in fishing and targeting behavior, i.e., 
stable choice of representative fishing locations and constant gear 
operation, factors that the standardization process is trying to control for 
by filtering them out (Thorson et al., 2017). If these assumptions are not 
met, then CPUE could just be reflecting more or less effective fishing 
practices, or natural differences in fish abundance in various areas and 
not overall change in the stock. CPUE standardization is a valuable but 
still imperfect step towards removing annual variation in the data not 
attributable to changes in abundance; thus, results should still be 
interpreted in this context, while keeping in mind other possible ex-
planations of the observed CPUE trends (Maunder and Punt, 2004). 
Moreover, it should also be highlighted that CPUE indicates relative 
abundance and not absolute abundance as in full stock assessment 
models along with key fisheries reference points, thus limiting the CPUE 
values as a stand-alone indicator of stock status. 

4.2. SPR values 

Low and moderate SPRs (SPR < 40%), with a high and moderate risk, 
indicate a fishing mortality that exceeds sustainable levels (F > FMSY) 
and overall biomass that is less than the maximum sustainable yield (B <
BMSY) (Gabriel and Mace, 1999). Generally, the higher the SPR value (e. 
g., >60%), the less impact fishing is having on the reproductive ability of 
the population, while lower SPR (e.g., 25%) indicates that fishing is 
reducing the egg production quite a lot (Camp et al., 2021). Neverthe-
less, it should be acknowledged that there can be multiple potential 
causes for any single SPR calculation that need to be considered when 
interpreting the results. In particular, the removal of mature fishes due 
to consistently heavy fishing pressure may indeed lead to a low SPR 
value (Camp et al., 2021). However, a low SPR may also be anticipated 
when a stock has had a recent surge in recruitment and there is a 
disproportionate number of juvenile fishes. Or when recent fishing has 
been reduced and the stock is recovering with a high abundance of ju-
veniles not being removed. Indeed, a highly variable annual recruitment 
results in unreliable SPR estimates (Hordyk et al., 2015). Therefore, 
when interpreting results from model-based indicators like SPR, one 
should be aware of and consider sources of uncertainty and imprecision, 
i.e., modeling assumptions, limitations, and pitfalls that are usually 
available through simulation testing (Hordyk et al., 2015; Rudd and 
Thorson, 2017). 

4.3. Combining catch-based indicators 

Using the standardized CPUE index with SPR should be more infor-
mative about fish abundance and stock status than using either of them 
in isolation. However, discrepancies between the standardized CPUE 
indices and SPR values illustrate the potential decoupling of these two 
indicators which could be explained by things like hyperstability or the 
fact that we do not have historical CPUE values before fishing intensity 
was high. Therefore, we utilize a sequential approach to interpreting 
results where SPR gives current stock status and the CPUE index gives 
the relative change leading to that stock status. 

High CPUE indices generally allude to high fish abundance (Richards 
and Schnute, 1986). However, our findings of higher CPUE even when 
SPR levels indicated unsustainable fishing levels, may be attributed to 
hyperstability, which is characterized by CPUE declining at a slower rate 
than abundance (Hilborn and Walters, 1992). Two factors may cause 
CPUE hyperstability: (a) an increase of fishers’ skill or technological 
advances, or (b) fish aggregations (Dassow et al., 2020). Though fishers 
can evolve in skill and technology, the time scale of this study was not 
long enough to detect significant effects of technological creep (Pal-
omares and Pauly, 2019), and there had not been significant changes in 
fishing technology. However, the target species’ ecological character-
istics indicate possible hyper aggregation through close habitat associ-
ations (Maunder et al., 2006; Dassow et al., 2020). When fish aggregate, 
local fish density can remain high despite changes in overall abundance. 
This leads to a hyperstable CPUE, i.e., high CPUE levels despite lower 
abundance (Hilborn and Walters, 1992). 

Another explanation for high CPUE with low SPR is that we do not 

Table 6 
Annual fishing vessel yield values as calculated from the CODRS dataset analyzed in the present study for the different fishing vessel sizes used in the deep demersal 
snapper-grouper fishery, i.e., nano - GT ≤ 5, small - 5 < GT ≤ 10, medium - 10 < GT ≤ 30, large - GT > 30. GT: gross tonnage. SE: standard error.    

Fishing vessel yield (t/GT/year) by year   

Vessel size 2016 2017 2018 2019 2020 2021 Mean ( ± SE) 

Nano GT ≤ 5 1.06 0.62 0.40 0.71 1.07 0.59 0.74 ( ± 0.11) 
Small 5 < GT ≤ 10 0.40 0.43 0.42 0.41 0.70 0.30 0.44 ( ± 0.05) 
Medium 10 < GT ≤ 30 0.52 0.41 0.44 0.47 0.43 0.23 0.42 ( ± 0.04) 
Large GT > 30 0.27 0.20 0.28 0.38 0.53 0.30 0.33 ( ± 0.05)  

Mean 0.56 
( ± 0.17) 

0.42 
( ± 0.09) 

0.39 
( ± 0.04) 

0.49 
( ± 0.07) 

0.68 
( ± 0.14) 

0.36 
( ± 0.08)   
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have CPUE values before fishing intensity was high (i.e., anything pre- 
2016) and thus do not really know the stock status when CPUE be-
gins. Thus, we could have relatively high CPUE with low SPR because 
the CPUE is low compared to what it would have been back in time 
before heavy fishing. Interestingly, the areas that showed evidence of 
relatively high CPUE indices with low SPR values were in FMAs 712 and 
713, i.e., the Java Sea and Makassar Strait, are characterized by catches 
with high proportion of immature juvenile fishes that may indicate the 
presence of nursery grounds and/or overfishing (Wibisono et al., 2021). 
Thus, these fishing grounds seem to be highly vulnerable to growth 
overfishing through the targeting of aggregations and juveniles (Froese, 
2004). Targeting fish aggregations has been documented to cause a 
‘boom-and-bust’ phenomenon in which catches are initially high, but 
rapidly decline to very low levels with devastating economic impacts 
(Bush et al., 2006; Clark and Dunn, 2012). Therefore, attention needs to 
be paid by policymakers to implement management strategies that uti-
lize the best data available to avoid overexploitation of the immatures or 
dense aggregations in these fisheries. 

4.4. Management implications 

Currently, Indonesia uses two fisheries management tools. The latest 
official MMAF stock assessments estimate a sustainable potential yield 
of 12.5 million tonnes for all fisheries in Indonesia (Ministerial Decree 
50, 2017). Based on the stock assessment results, the reinforcement of 
fisheries controls involves a licensing system in which fishing licenses 
are granted to fishing vessels depending on their GT and resulting yield 
(t/GT/year; here, based on the CODRS data, the smaller the vessel, the 
higher the yield), and new licenses will be only given to FMAs that are 
not overfished, i.e., where the exploitation rate is less than 1 (Muawanah 
et al., 2018). The most recent yield values set by MMAF for the main 
fishing gears used in the deep-water demersal fisheries, i.e., droplines 
and longlines (Ministerial Decree 98, 2021; Table 4), are 1.4–2.4 times 
higher than the mean values estimated using our dataset (Table 5). This 
discrepancy may be attributed to a number of factors, such as differences 
in the methods applied or data used to estimate the productivity values 
(e.g., the CODRS covers only a subset of the fleet) or the annual vari-
ability in system productivity. However, the most possible explanation is 
the inclusion of species that are not typically part of the studied deep 
demersal fisheries. When excluding those (e.g., Arius spp., Nemipterus 
spp.) and taking into consideration only the proportion of the typical 
species in the catch (see asterisks in Table 4), then the MMAF yield 
values and the values estimated from our dataset are close to one 
another. In any case, it would be worth investigating if the values pro-
vided by the MMAF might be too high given the indications of poor stock 
status found in this and previous studies of the fisheries (Wibisono et al., 
2021, 2022; Dimarchopoulou et al., 2021). The framework and combi-
nation of stock status indicators used here has great potential to be used 
to inform harvest control rules in Indonesia that perform better than the 
status quo of 80% of MSY estimates. Using CPUE and SPR as dynamic 
status measures to scale back fishing when stock status is deteriorating 
may ensure avoiding larger issues and loss of catch and revenue in the 
future. 

Despite the importance of formulating fisheries management stra-
tegies for these fisheries, the discrepancy between CPUE and SPR could 
create practical difficulties in the implementation of such measures 
depending on priorities (economic vs. environmental). The disjunction 
between the relative trends in catch (high or increasing catch rates) and 
stock status (low SPR) may lead fishers to erroneously believe in 
bountiful fish stocks. As a result, the same management scenario may 
result in different potential reactions by fishing communities that 
contribute to resistance of new management strategies, a lower ability to 
cope with and adapt to the newly implemented strategies, and lesser 
recognition of such strategies (Veitayaki et al., 2003; Marshall, 2007; 
Tracey and Lyle, 2011; Gaymer et al., 2014; Pita et al., 2020). Without 
stakeholder participation and legitimization or acceptance of 

management systems, it is difficult for new policies to be effective (Irvin 
and Stansbury, 2004; Varjopuro et al., 2008; Pita et al., 2020). However, 
there are other factors that can enhance policy legitimacy, such as the 
implementation of fisheries co-management schemes, a central element 
of an ecosystem approach to fisheries management considered by the 
Indonesian Government through the MMAF (Muawanah et al., 2018), 
having personal relationships with related government or 
non-governmental workers, consistent and honest enforcement of pol-
icies, and evidence of cultural respect towards the fishing communities 
where the policy is being implemented (Stern, 2008). Especially in the 
context of the deep-slope demersal fisheries, the MMAF is developing a 
harvest control strategy in addition to the pre-existing fisheries man-
agement tools, i.e., the MSY and TAC systems (Ministerial Decree 123 of 
2021/KEPMEN- KP 123/2021). The Decree mandates the MMAF spe-
cifically to conduct stock assessments on these fisheries in each FMA. 
The present work would greatly enhance the capabilities of civil society, 
non-governmental organizations, the private sector, or other researchers 
to be more actively involved in commenting on and discussing the draft 
harvest control strategy in online MMAF sessions that gathers inputs on 
the draft. 

Despite the challenges that may arise from implementing manage-
ment strategies in the deep demersal fisheries, sustainable management 
is still feasible. For example, to prioritize short-term economic gains, 
protecting low or decreasing CPUE fishing grounds in either a low or 
high risk (high or low SPR) FMA might yield higher potential social 
acceptance than protecting high or increasing CPUE fishing grounds. Of 
course, fishers’ willingness to explore alternative fishing grounds will 
also be affected by costs to operate in other areas and opportunities 
elsewhere. However, even despite the lack of potential social accep-
tance, high risk (low SPR) FMAs remain a high priority for fisheries 
management to ensure stock sustainability and long-term economic 
viability of the fisheries. 

4.5. Conclusions 

SPR and CPUE indices each have their own strengths and weak-
nesses. SPR’s main strength is the built-in reference point of the unfished 
stock status, while its main drawback is that it can be misleading with a 
tendency to reflect recent (not long term) variability in recruitment or 
fishing pressure. When taking into consideration CPUE’s own draw-
backs, such as hyperstability and the inability to know CPUE back before 
fishing was heavy, the sequential interpretation of CPUE trends can 
benefit from SPR as a complementary measure as shown in this work. In 
addition to CPUE and SPR, future studies can potentially include other 
indicators to be tested and incorporated into these fisheries’ assess-
ments. For example, upper-length (upper 5% of the length-frequency 
distribution) for the swordfish fishery in Australia was a better indica-
tor than (an unstandardized) CPUE (Punt et al., 2001). In addition, 
size-based indicators such as mean length of the catch (Lmean) or 
maximum size in the catch (Lmax) may be tested as fishing typically 
truncates the biomass at large sizes (Ault et al., 2014; Dimarchopoulou 
et al., 2018). The CPUE index can also be utilized in subsequent fisheries 
modeling to estimate fishing mortality (i.e., 
catch-and-effort-time-series) or as an index of abundance to fit fisheries 
models using the observation error method (Maunder and Starr, 2003; 
Ault et al., 2014). With the addition of other fisheries indicators, more 
research will be needed into the hierarchical decision-making to sum-
marize potentially opposing fishery indicators (Wilson et al., 2010; 
Dowling et al., 2015; Harford et al., 2021). 

Used together to complement one another, the standardized CPUE 
indices and SPR allow policymakers to achieve a more holistic view of 
fisheries. CPUE trends and SPR values give a clearer picture of the stock 
status than either of them alone. The standardized CPUE index alone 
would not be particularly informative for management because of the 
lack of baseline values to compare the current values with and it could 
give a misleading conclusion of fisheries performance (Maunder et al., 
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2006). However, SPR without the CPUE indices is not able to detect the 
occurrence of possible fish aggregations or be definitive about stock 
status owing to recent changes in recruitment or fishing pressure. Our 
results suggest that despite the varied usage of CPUE in past fisheries 
management scenarios, when combined with other fisheries indicators 
such as SPR, the fisheries-dependent index remains an asset in deter-
mining fisheries status. The difference between CPUE and actual fish-
eries sustainability is a perception divide that requires public 
engagement and trust-building between policymakers and fishing 
communities. 
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